Using Regression Techniques to Predict Large Data Transfers
نویسندگان
چکیده
منابع مشابه
Using Regression Techniques to Predict Large Data Transfers
The recent proliferation of Data Grids and the increasingly common practice of using resources as distributed data stores provide a convenient environment for communities of researchers to share, replicate, and manage access to copies of large datasets. This has led to the question of which replica can be accessed most efficiently. In such environments, fetching data from one of the several rep...
متن کاملComputational techniques for spatial logistic regression with large data sets
In epidemiological research, outcomes are frequently non-normal, sample sizes may be large, and effect sizes are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. I focus on binary outcomes, with the risk surface a smooth function of space, but the development herein is relevan...
متن کاملExtension of Logic regression to Longitudinal data: Transition Logic Regression
Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...
متن کاملUsing emotional intelligence to predict job stress: Artificial neural network and regression models
Introduction: These days, there is a consensus that emotional intelligence plays an important role in the success of individuals in different areas of life. Persons with higher emotional intelligence had lower stress in dealing with demands and pressures in the workplace. The purpose of this study was to use artificial neural network to predict job stress and to compare the performance of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of High Performance Computing Applications
سال: 2003
ISSN: 1094-3420,1741-2846
DOI: 10.1177/1094342003173004